点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:乐发彩票交流群_乐发彩票官网平台
首页>文化频道>要闻>正文

乐发彩票交流群_乐发彩票官网平台

来源:乐发彩票手机版APP2022-02-28 17:48

  

乐发彩票交流群

“酷爷爷”与“小使者”,习近平如何与“未来”对话未来******

  (近观中国·外交篇)“酷爷爷”与“小使者”,习近平如何与“未来”对话未来

  中新社北京9月29日电 题:“酷爷爷”与“小使者”,习近平如何与“未来”对话未来

  作者 钟三屏

  在中国最高领导人习近平紧凑的外访行程中,常常有与当地青少年互动的环节。即便在国内繁忙的日常工作中,习近平也多有与外国中小学生的尺素往来。

  在这些互动中,“人民友好的传承者”“东西文明互鉴的促进者”是习近平对各国青少年的深切期待,他与这些“未来”的对话,既有青春的关键词,也有放眼世界的未来。

  ——友谊的未来

  在美国犹他州卡斯卡德小学生沃娜亚的眼中,中国最高领导人习近平是个“很酷”的爷爷。

  卡斯卡德小学是犹他州最早开展中文沉浸式项目的学校之一。2020年春节前夕,50名四年级小学生用中文给习近平写就新春贺卡寄往中国。

  很快,他们便收到了回信。“习爷爷说我们可以做友谊小使者,可以帮助中国和美国做更好的朋友!”

    资料图。图片来源:视觉中国资料图。图片来源:视觉中国

  众所周知,习近平是个“球迷”。2014年对德首次国事访问,在柏林奥林匹亚体育场的草坪上,他与共同训练的中德两国少年足球队员对话:希望你们这一代出现球星!2017年7月,在同一个体育场,他鼓励参加中德青少年足球友谊赛的小球员“成为好朋友、好伙伴”。

  在双方共同努力下,中德足球合作近年不断深入,在结出硕果的同时,也成为传播文化和友谊、促进民心相通的桥梁。

  在比利时大熊猫园给孩子们送毛绒玩具,在巴布亚新几内亚同合唱团学生聊他小时候唱过的中国歌曲,在冰场中圈为中俄青少年冰球友谊赛开球……这些融元首外交与民间外交为一体的温情瞬间,让友谊的种子厚植,“人民友好的传承者”“东西文明互鉴的促进者”正在成长。

  ——人类的未来

  天下大同、协和万邦是中华民族自古以来对人类社会的美好憧憬。习近平在2022年夏天与马耳他圣玛格丽特中学“中国角”师生的通信中说,“我们生活的世界历史和现实交织、希望和挑战并存,人类命运休戚与共,唯有守望相助、合作共赢才能让人类共享发展成果。”

  为破解全球发展难题、应对国际安全挑战,习近平先后提出共建“一带一路”倡议、全球发展倡议、全球安全倡议,中国正在以实际行动践行人类命运共同体理念。与此同时,习近平也用他的方式帮助世界各国青少年更好地理解这些宏大命题。

  “像保护眼睛一样保护自然和生态环境”“欢迎你们有机会来到中国,参观世界上最大的风电站和太阳能电站、面积最广阔的人工林和风光秀丽的国家公园”。2022年4月,在复信英国弗朗西斯·霍兰德学校小学生时,习近平同这些关注气候变化的“绿色小使者”分享中国的环保故事。

    资料图:塞罕坝林场。图片来源:视觉中国
资料图:塞罕坝林场。图片来源:视觉中国

  ——阳光的未来

  孩子是世界的未来,需要小心呵护,让他们沐浴在幸福安宁的阳光里。

  2019年5月15日,习近平在亚洲文明对话大会开幕式主旨演讲中说,“亚洲一些民众特别是妇女儿童正忍受着贫困、饥饿、疾病的折磨,这样的局面必须改变”。

  在此前不久,他刚给老挝中老友好农冰村小学全体师生回信。“从你们的来信中得知,‘一带一路’建设给你们的学校和家乡、学习和生活带来了许多积极变化。实现沿线国家共同发展,让民众过上好日子是我提出‘一带一路’倡议的初心。”

  “欢迎你们早日乘上中老铁路列车来到北京”,是这封信的结语。2021年12月3日,连接昆明和万象的中老铁路全线开通运营,农冰村小学的学生也坐上了从万象始发的“澜沧号”动车组列车。

  中华文化素来秉承“人不独亲其亲,不独子其子。”在联合国的讲台,习近平多次呼吁让全世界的儿童都能沐浴在幸福安宁的阳光里。

  百年未有之大变局叠加全球疫情,世界并不太平。“此时此刻,世界上很多孩子正生活在战乱的惊恐之中。我们必须作出努力,让战争远离人类,让全世界的孩子们都在和平的阳光下幸福成长。”习近平2014年在联合国教科文组织总部的演讲,至今依然在回响,人类比以往更需要携手前行,共克时艰。

  若行而不辍,则未来可期。(完)(图片素材来源:新华社、中新社、中新网)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 青春喜剧《大大哒》定档5.24 元气胖妞蜕变女神

  • 微访谈:林怡谈教育应很自然

独家策划

推荐阅读
乐发彩票注册曾志权案开庭:被控受贿1.4亿
2024-07-10
乐发彩票必赚方案海马8S将于7月正式上市 搭载1.6T发动机
2024-09-04
乐发彩票走势图《X战警:黑凤凰》预告
2024-07-21
乐发彩票登录 海军节登上俄罗斯护卫舰:女兵颜值不输电影明星
2024-04-24
乐发彩票骗局国安连胜创历史 比埃拉是客战恒大抢分的关键
2024-04-21
乐发彩票官网【世界看冬奥】在外国运动员的镜头里,世界看到一个接地气的北京冬奥
2024-06-25
乐发彩票手机版伦敦占星学院院长:2019年十二星座运势
2024-07-12
乐发彩票技巧跨境电商迎新政策 出口商品退运可实现“零税负”
2024-02-28
乐发彩票官网网址勇者无畏,且看国乒,问鼎江山万里如初💪 ​
2023-12-01
乐发彩票漏洞哈登:我们想得到公平 希望裁判用正确方式吹罚
2024-10-04
乐发彩票邀请码杨洋:快乐才能使人像阳光
2024-05-10
乐发彩票返点 WNBA选秀大会 韩旭第14顺位被纽约自由人选中
2024-04-19
乐发彩票app为防范疫情传播 希腊帕特雷市取消狂欢节大游行
2024-07-11
乐发彩票下载app 全国各地哪里的早餐最好吃?
2024-07-05
乐发彩票论坛用这几招保证让孩子爱上阅读!
2023-11-27
乐发彩票赔率私募持股曝光:高毅新进8股 淡水泉新进中材科技
2024-06-12
乐发彩票官方网站德国想要废除家庭作业
2024-03-25
乐发彩票玩法看似简单的数学难题困扰了人类64年!现在它被破解了
2024-07-05
乐发彩票app下载意媒:里皮已和足协谈妥
2024-05-09
乐发彩票投注《比悲伤更悲伤的故事》
2024-07-07
乐发彩票规则只怪咱没住上这5个宿舍
2023-12-19
乐发彩票客户端"懒得载你"!好友集资送新车 男子傻站车前泪崩
2024-05-09
乐发彩票注册网刘诗诗新剧真的很赶客
2024-03-30
乐发彩票计划群央视重要提示:5月新规来了 第一条就超重磅
2024-01-31
加载更多
乐发彩票地图